Main Memory:

Easy: (solve within 3 mins for each)
1. Why are page sizes always powers of 2? (2)
2. Explain the difference between internal and external fragmentation. (2+2 = 4)
3. What is the purpose of paging the page table? (2)

Medium: (solve within 5 mins)
4. Consider a logical address space of 64 pages of 1024 words each, mapped onto a physical memory of 32 frames.
 a. How many bits are there in the logical address? (2+2 = 4)
 b. How many bits are there in the physical address?

Hard: (solve within 10 mins)
5. Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: (10)
   ```
   ./a.out 19986
   Your program would output:
   The address 19986 contains:
   page number = 4
   offset = 3602
   ```
 Writing this program will require using the appropriate data type to store 32 bits. You’re encouraged to use unsigned data types.

Virtual Memory:

Medium: (solve within 5 mins. However, this is a knowledge-based question - you can answer it sooner.)
1. Discuss the hardware support required to support demand paging. (4)

Hard: (solve within 15 mins)
2. Consider a demand-paging system with the following time-measured utilizations: (2x7 = 14)
 - CPU utilization 20%
 - Paging disk 97.7%
 - Other I/O devices 5%
 For each of the following, indicate whether it will (or is likely to) improve CPU utilization. Explain your answers.
 a. Install a faster CPU.
 b. Install a bigger paging disk.
 c. Increase the degree of multiprogramming.
 d. Decrease the degree of multiprogramming.
 e. Install more main memory.
 f. Install a faster hard disk.
 g. Increase the page size.