
CSE 4/521
Introduction to Operating

Systems
Lecture	11	– Deadlocks

(System	Model,	Deadlock	Characterization,	Methods	
for	Handling	Deadlocks,	Deadlock	Prevention)

Summer	2018

Overview

• System	Model
• Deadlock	Characterization
• Methods	for	Handling	Deadlocks
• Deadlock	Prevention

Objective:
1. To	develop	a	description	of	deadlocks,	which	prevent	sets	of	concurrent	processes	

from	completing	their	tasks
2. To	present	a	number	of	different	methods	for	preventing	or	avoiding	deadlocks in	

a	computer	system

2

Recap

• Real-time	CPU	Scheduling
• Rate	monotonic	scheduling,	earliest	deadline	first
scheduling

• Operating-System	Examples
• Scheduling	in	Linux ,	scheduling	in	Windows,	scheduling	
in	Solaris

3

Questions
1. What	are	the	characteristics of	rate	monotonic	

scheduling	and	earliest	deadline	first	scheduling?	
(Easy)

2. How	does	Linux	decide	the	next	task	to	run?	
(Medium)

3. Draw	the	CPU	queueing	diagram	for	EDS scheme:

4

P1	=	50
P2	=	80
t1		=	25
t2		=	35
Deadline	is	to	complete	before	next	period

Overview

• System	Model
• Deadlock	Characterization
• Methods	for	Handling	Deadlocks
• Deadlock	Prevention

5

Overview

• System	Model
• Deadlock	Characterization
• Methods	for	Handling	Deadlocks
• Deadlock	Prevention

6

System Model

• System	consists	of	resources
• Resource	types	R1,	R2,	.	.	.,	Rm

CPU	cycles,	memory	space,	I/O	devices

• Each	resource	type	Ri has	Wi instances.
• Each	process	utilizes	a	resource	as	follows:
• request	
• use	
• release

7

Overview

• System	Model
• Deadlock	Characterization
• Methods	for	Handling	Deadlocks
• Deadlock	Prevention

8

Deadlock Characterization

• Mutual	exclusion: only	one	process	at	a	time	can	use	a	
resource

• Hold	and	wait: a	process	holding	at	least	one	resource	is	
waiting	to	acquire	additional	resources	held	by	other	
processes

• No	preemption: a	resource	can	be	released	only	voluntarily	by	
the	process	holding	it,	after	that	process	has	completed	its	
task

• Circular	wait: there	exists	a	set	{P0,	P1,	…,	Pn}	of	waiting	
processes	such	that	P0	is	waiting	for	a	resource	that	is	held	by	
P1,	P1 is	waiting	for	a	resource	that	is	held	by	P2,	…,	Pn–1 is	
waiting	for	a	resource	that	is	held	by	Pn,	and	Pn is	waiting	for	a	
resource	that	is	held	by	P0.

Deadlock can arise if four conditions hold simultaneously.

9

Deadlock Characterization :
Resource-Allocation Graph

• V	is	partitioned	into	two	types:
• P =	{P1,	P2,	…,	Pn},	the	set	consisting	of	all	the	processes	
in	the	system

• R =	{R1,	R2,	…,	Rm},	the	set	consisting	of	all	resource	types	
in	the	system

• request	edge	– directed	edge	Pi	® Rj

• assignment	edge	– directed	edge	Rj® Pi

A set of vertices V and a set of edges E

10

Deadlock Characterization :
Resource-Allocation Graph

• Process

• Resource	Type	with	4	instances

• Pi requests	instance	of	Rj

• Pi is	holding	an	instance	of	Rj

Pi

Pi

11

Deadlock Characterization :
Resource-Allocation Graph Example

12

Deadlock Characterization :
Resource-Allocation Graph with A Deadlock

13

Deadlock Characterization :
Graph with a Cycle But No Deadlock

14

Deadlock Characterization :
Basic Facts

• If	graph	contains	no	cycles	Þ no	deadlock
• If	graph	contains	a	cycle	Þ
• if	only	one	instance	per	resource type,	then	deadlock
• if	several	instances	per	resource	type,	possibility	of	
deadlock

15

Overview

• System	Model
• Deadlock	Characterization
• Methods	for	Handling	Deadlocks
• Deadlock	Prevention

16

Method for Handling Deadlocks

• Ensure	that	the	system	will	never enter	a	deadlock	
state:
• Deadlock	prevention
• Deadlock	avoidance

• Allow	the	system	to	enter	a	deadlock	state	and	
then	recover
• Ignore	the	problem	and	pretend	that	deadlocks	
never	occur	in	the	system

17

Overview

• System	Model
• Deadlock	Characterization
• Methods	for	Handling	Deadlocks
• Deadlock	Prevention

18

Deadlock Prevention

• Mutual	Exclusion	– not	required	for	sharable	resources	(e.g.,	
read-only	files);	must	hold	for	non-sharable	resources
• Hold	and	Wait	– must	guarantee	that	whenever	a	process	
requests	a	resource,	it	does	not	hold	any	other	resources
• Require	process	to	request	and	be	allocated	all	its	
resources	before	it	begins	execution,	or	allow	process	to	
request	resources	only	when	the	process	has	none	
allocated	to	it.
• Low	resource	utilization;	starvation	possible

Restrain the ways request can be made

19

Deadlock Prevention

• No	Preemption	–
• If	a	process	that	is	holding	some	resources	requests	
another	resource	that	cannot	be	immediately	allocated	
to	it,	then	all	resources	currently	being	held	are	released
• Preempted	resources	are	added	to	the	list	of	resources	
for	which	the	process	is	waiting
• Process	will	be	restarted	only	when	it	can	regain	its	old	
resources,	as	well	as	the	new	ones	that	it	is	requesting

• Circular	Wait	– impose	a	total	ordering	of	all	resource	types,	
and	require	that	each	process	requests	resources	in	an	
increasing	order	of	enumeration

20

Deadlock Prevention :
Deadlock Example

/* thread one runs in this function */

void *do_work_one(void *param)
{

pthread_mutex_lock(&first_mutex);

pthread_mutex_lock(&second_mutex);

/** * Do some work */
pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)
{

pthread_mutex_lock(&second_mutex);

pthread_mutex_lock(&first_mutex);

/** * Do some work */
pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);

}

21

Deadlock Prevention :
Deadlock Example with Lock Ordering

void transaction(Account from,
Account to, double amount)
{

mutex lock1, lock2;
lock1 = get_lock(from);
lock2 = get_lock(to);
acquire(lock1);

acquire(lock2);
withdraw(from, amount);
deposit(to, amount);

release(lock2);
release(lock1);

}

Transactions	1	and	2	execute	concurrently.		Transaction		1	transfers	$25	from	account	
A	to	account	B,	and	Transaction	2	transfers	$50	from	account	B	to	account	A

22

Credits for slides

Silberschatz,	Galvin	and	Gagne

23

